Linear shafts / one-sided keyway / external thread / internal thread / two-sided keyway

Linear shafts / one-sided keyway / external thread / internal thread / two-sided keyway
  • Order quantities extended (D-JIT)

(i)Remark

  • SFJQ has been localized according to European needs and requirements. Please have a look on the EU version SFJQEU. SFJQEU is available in EN 1.1213 (Cf53) and h6 / h7.

Part Number

Once your search is narrowed to one product,
the corresponding part number is displayed here.

Back to Linear Shaft Category

Technical Drawing - Linear Shafts

 

Ends Grooved/Threaded/Tapped/Stepped:Related Image
Annealing could reduce hardness at set screw grooved shaft end machined areas (effective thread length + approx. 10mm).
L Dimension Tolerance, Circularity, Straightness, Perpendicularity, Concentricity and Changes in Hardness >> P.111
Features of LTBC Plating Here

 

Basic Properties (e.g. material, hardness, coating, tolerance) - Linear Shafts

 

TypeMaterialHardnessSurface Treatment
Solid, Both
Ends Grooved
Solid, One
End Grooved
One End
Tapped
One End
Threaded
One End Threaded with
O.D. same as Shaft O.D.
SFJQSFJSSFTSSFNSSFQSEN 1.3505 Equiv.Effective Hardened Depth of
Induction Hardening >>P.112
EN 1.3505 Equiv. 58HRC~
EN 1.4037 Equiv. 56HRC~
-
SSFJQSSFJSSSFTSSSFNSSSFQSEN 1.4037 Equiv.
PSFJQPSFJSPSFTSPSFNSPSFQSEN 1.3505 Equiv.Hard Chrome Plating
Plating Hardness: HV750 ~
Plating Thickness: 5µ or More
PSSFJQPSSFJSPSSFTSPSSFNSPSSFQSEN 1.4037 Equiv.

 

Further specifications can be found under the tab More Information.

 

Composition of a Product Code - Linear Shafts

 

Part Number-L-M-F-B-P-V-K-G-Q
SFJQ16-100        -V10-K5-G10-Q5
SSFTS20-500-M10          -G10-Q7
PSFNS8-650  -F10-B8-P4    -G20-Q4

 

Alterations - Linear Shafts


Ends Grooved/Threaded/Tapped/Stepped:Related Image

You find further options in detail under Option Overview.

 

Part Number:  

    3D preview is not available, because the part number has not yet been determined.

  • In order to open the 3D preview, the part number must be fixed.
Loading...
Part Number
PSFJS6-[20-600/1]-G[5-18/1]-Q4
PSFJS8-[20-800/1]-G[5-24/1]-Q[4,​5]
PSFJS10-[20-800/1]-G[5-30/1]-Q[4,​5]
PSFJS12-[20-1000/1]-G[5-36/1]-Q5
PSFJS13-[25-1000/1]-G[5-39/1]-Q5
PSFJS15-[25-1000/1]-G[5-45/1]-Q[5,​6]
PSFJS16-[30-1200/1]-G[5-48/1]-Q[5,​6]
PSFJS18-[30-1200/1]-G[5-54/1]-Q[5,​6]
PSFJS20-[30-1200/1]-G[6-60/1]-Q[6,​7]
PSFJS25-[30-1200/1]-G[6-75/1]-Q[6,​7]
PSFJS30-[35-1500/1]-G[6-90/1]-Q7
PSSFJS6-[20-600/1]-G[5-18/1]-Q4
PSSFJS8-[20-800/1]-G[5-24/1]-Q[4,​5]
PSSFJS10-[20-800/1]-G[5-30/1]-Q[4,​5]
PSSFJS12-[20-1000/1]-G[5-36/1]-Q5
PSSFJS13-[25-1000/1]-G[5-39/1]-Q5
PSSFJS15-[25-1000/1]-G[5-45/1]-Q[5,​6]
PSSFJS16-[30-1200/1]-G[5-48/1]-Q[5,​6]
PSSFJS18-[30-1200/1]-G[5-54/1]-Q[5,​6]
PSSFJS20-[30-1200/1]-G[6-60/1]-Q[6,​7]
PSSFJS25-[30-1200/1]-G[6-75/1]-Q[6,​7]
PSSFJS30-[35-1500/1]-G[6-90/1]-Q7
SFJS6-[20-600/1]-G[5-18/1]-Q4
SFJS8-[20-800/1]-G[5-24/1]-Q[4,​5]
SFJS10-[20-800/1]-G[5-30/1]-Q[4,​5]
SFJS12-[20-1000/1]-G[5-36/1]-Q5
SFJS13-[25-1000/1]-G[5-39/1]-Q5
SFJS15-[25-1000/1]-G[5-45/1]-Q[5,​6]
SFJS16-[30-1200/1]-G[5-48/1]-Q[5,​6]
SFJS18-[30-1200/1]-G[5-54/1]-Q[5,​6]
SFJS20-[30-1200/1]-G[6-60/1]-Q[6,​7]
SFJS25-[30-1200/1]-G[6-75/1]-Q[6,​7]
SFJS30-[35-1500/1]-G[6-90/1]-Q7
SSFJS6-[20-600/1]-G[5-18/1]-Q4
SSFJS8-[20-800/1]-G[5-24/1]-Q[4,​5]
SSFJS10-[20-800/1]-G[5-30/1]-Q[4,​5]
SSFJS12-[20-1000/1]-G[5-36/1]-Q5
SSFJS13-[25-1000/1]-G[5-39/1]-Q5
SSFJS15-[25-1000/1]-G[5-45/1]-Q[5,​6]
SSFJS16-[30-1200/1]-G[5-48/1]-Q[5,​6]
SSFJS18-[30-1400/1]-G[5-54/1]-Q[5,​6]
SSFJS20-[30-1200/1]-G[6-60/1]-Q[6,​7]
SSFJS25-[30-1200/1]-G[6-75/1]-Q[6,​7]
SSFJS30-[35-1500/1]-G[6-90/1]-Q7
Part NumberMinimum order quantityVolume Discount
Standard
Shipping Days
?
RoHSShaft end Shape (Left) [D] Diameter (Shaft)
(mm)
[L] Length (Shaft)
(mm)
Material Surface Treatment Hardness End Section Type [B] Length (thread)
(mm)
[F] Length (stud - offset - front side)
(mm)
[K] Width (mounting groove - 45° chamfered)
(mm)
[Q]
(mm)
[P] Diameter (stepped - front side)
(mm)
[V] Length (groove)
(mm)
[G]
(mm)
[M] Size (thread - depth 2xM)
(mm)
1 4 Days 10Straight620 ~ 600[Alloyed Steel] EN 1.3505 Equiv.Hard Chrome PlatingInduction Hardening (58HRC~)Solid, One End Grooved---4--5 ~ 18-
1 4 Days 10Straight820 ~ 800[Alloyed Steel] EN 1.3505 Equiv.Hard Chrome PlatingInduction Hardening (58HRC~)Solid, One End Grooved---4 ~ 5--5 ~ 24-
1 4 Days 10Straight1020 ~ 800[Alloyed Steel] EN 1.3505 Equiv.Hard Chrome PlatingInduction Hardening (58HRC~)Solid, One End Grooved---4 ~ 5--5 ~ 30-
1 4 Days 10Straight1220 ~ 1000[Alloyed Steel] EN 1.3505 Equiv.Hard Chrome PlatingInduction Hardening (58HRC~)Solid, One End Grooved---5--5 ~ 36-
1 4 Days 10Straight1325 ~ 1000[Alloyed Steel] EN 1.3505 Equiv.Hard Chrome PlatingInduction Hardening (58HRC~)Solid, One End Grooved---5--5 ~ 39-
1 4 Days 10Straight1525 ~ 1000[Alloyed Steel] EN 1.3505 Equiv.Hard Chrome PlatingInduction Hardening (58HRC~)Solid, One End Grooved---5 ~ 6--5 ~ 45-
1 4 Days 10Straight1630 ~ 1200[Alloyed Steel] EN 1.3505 Equiv.Hard Chrome PlatingInduction Hardening (58HRC~)Solid, One End Grooved---5 ~ 6--5 ~ 48-
1 7 Days 10Straight1830 ~ 1200[Alloyed Steel] EN 1.3505 Equiv.Hard Chrome PlatingInduction Hardening (58HRC~)Solid, One End Grooved---5 ~ 6--5 ~ 54-
1 4 Days 10Straight2030 ~ 1200[Alloyed Steel] EN 1.3505 Equiv.Hard Chrome PlatingInduction Hardening (58HRC~)Solid, One End Grooved---6 ~ 7--6 ~ 60-
1 4 Days 10Straight2530 ~ 1200[Alloyed Steel] EN 1.3505 Equiv.Hard Chrome PlatingInduction Hardening (58HRC~)Solid, One End Grooved---6 ~ 7--6 ~ 75-
1 4 Days 10Straight3035 ~ 1500[Alloyed Steel] EN 1.3505 Equiv.Hard Chrome PlatingInduction Hardening (58HRC~)Solid, One End Grooved---7--6 ~ 90-
1 4 Days 10Straight620 ~ 600[Stainless Steel (martensitique)] EN 1.4037 Equiv.Hard Chrome PlatingInduction Hardening (56HRC~)Solid, One End Grooved---4--5 ~ 18-
1 4 Days 10Straight820 ~ 800[Stainless Steel (martensitique)] EN 1.4037 Equiv.Hard Chrome PlatingInduction Hardening (56HRC~)Solid, One End Grooved---4 ~ 5--5 ~ 24-
1 4 Days 10Straight1020 ~ 800[Stainless Steel (martensitique)] EN 1.4037 Equiv.Hard Chrome PlatingInduction Hardening (56HRC~)Solid, One End Grooved---4 ~ 5--5 ~ 30-
1 4 Days 10Straight1220 ~ 1000[Stainless Steel (martensitique)] EN 1.4037 Equiv.Hard Chrome PlatingInduction Hardening (56HRC~)Solid, One End Grooved---5--5 ~ 36-
1 4 Days 10Straight1325 ~ 1000[Stainless Steel (martensitique)] EN 1.4037 Equiv.Hard Chrome PlatingInduction Hardening (56HRC~)Solid, One End Grooved---5--5 ~ 39-
1 4 Days 10Straight1525 ~ 1000[Stainless Steel (martensitique)] EN 1.4037 Equiv.Hard Chrome PlatingInduction Hardening (56HRC~)Solid, One End Grooved---5 ~ 6--5 ~ 45-
1 4 Days 10Straight1630 ~ 1200[Stainless Steel (martensitique)] EN 1.4037 Equiv.Hard Chrome PlatingInduction Hardening (56HRC~)Solid, One End Grooved---5 ~ 6--5 ~ 48-
1 7 Days 10Straight1830 ~ 1200[Stainless Steel (martensitique)] EN 1.4037 Equiv.Hard Chrome PlatingInduction Hardening (56HRC~)Solid, One End Grooved---5 ~ 6--5 ~ 54-
1 4 Days 10Straight2030 ~ 1200[Stainless Steel (martensitique)] EN 1.4037 Equiv.Hard Chrome PlatingInduction Hardening (56HRC~)Solid, One End Grooved---6 ~ 7--6 ~ 60-
1 4 Days 10Straight2530 ~ 1200[Stainless Steel (martensitique)] EN 1.4037 Equiv.Hard Chrome PlatingInduction Hardening (56HRC~)Solid, One End Grooved---6 ~ 7--6 ~ 75-
1 4 Days 10Straight3035 ~ 1500[Stainless Steel (martensitique)] EN 1.4037 Equiv.Hard Chrome PlatingInduction Hardening (56HRC~)Solid, One End Grooved---7--6 ~ 90-
1 4 Days 10Straight620 ~ 600[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)Solid, One End Grooved---4--5 ~ 18-
1 4 Days 10Straight820 ~ 800[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)Solid, One End Grooved---4 ~ 5--5 ~ 24-
1 4 Days 10Straight1020 ~ 800[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)Solid, One End Grooved---4 ~ 5--5 ~ 30-
1 4 Days 10Straight1220 ~ 1000[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)Solid, One End Grooved---5--5 ~ 36-
1 4 Days 10Straight1325 ~ 1000[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)Solid, One End Grooved---5--5 ~ 39-
1 4 Days 10Straight1525 ~ 1000[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)Solid, One End Grooved---5 ~ 6--5 ~ 45-
1 4 Days 10Straight1630 ~ 1200[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)Solid, One End Grooved---5 ~ 6--5 ~ 48-
1 7 Days 10Straight1830 ~ 1200[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)Solid, One End Grooved---5 ~ 6--5 ~ 54-
1 4 Days 10Straight2030 ~ 1200[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)Solid, One End Grooved---6 ~ 7--6 ~ 60-
1 4 Days 10Straight2530 ~ 1200[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)Solid, One End Grooved---6 ~ 7--6 ~ 75-
1 4 Days 10Straight3035 ~ 1500[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)Solid, One End Grooved---7--6 ~ 90-
1 4 Days 10Straight620 ~ 600[Stainless Steel (martensitique)] EN 1.4037 Equiv.No TreatmentInduction Hardening (56HRC~)Solid, One End Grooved---4--5 ~ 18-
1 4 Days 10Straight820 ~ 800[Stainless Steel (martensitique)] EN 1.4037 Equiv.No TreatmentInduction Hardening (56HRC~)Solid, One End Grooved---4 ~ 5--5 ~ 24-
1 4 Days 10Straight1020 ~ 800[Stainless Steel (martensitique)] EN 1.4037 Equiv.No TreatmentInduction Hardening (56HRC~)Solid, One End Grooved---4 ~ 5--5 ~ 30-
1 4 Days 10Straight1220 ~ 1000[Stainless Steel (martensitique)] EN 1.4037 Equiv.No TreatmentInduction Hardening (56HRC~)Solid, One End Grooved---5--5 ~ 36-
1 4 Days 10Straight1325 ~ 1000[Stainless Steel (martensitique)] EN 1.4037 Equiv.No TreatmentInduction Hardening (56HRC~)Solid, One End Grooved---5--5 ~ 39-
1 4 Days 10Straight1525 ~ 1000[Stainless Steel (martensitique)] EN 1.4037 Equiv.No TreatmentInduction Hardening (56HRC~)Solid, One End Grooved---5 ~ 6--5 ~ 45-
1 4 Days 10Straight1630 ~ 1200[Stainless Steel (martensitique)] EN 1.4037 Equiv.No TreatmentInduction Hardening (56HRC~)Solid, One End Grooved---5 ~ 6--5 ~ 48-
1 7 Days 10Straight1830 ~ 1400[Stainless Steel (martensitique)] EN 1.4037 Equiv.No TreatmentInduction Hardening (56HRC~)Solid, One End Grooved---5 ~ 6--5 ~ 54-
1 4 Days 10Straight2030 ~ 1200[Stainless Steel (martensitique)] EN 1.4037 Equiv.No TreatmentInduction Hardening (56HRC~)Solid, One End Grooved---6 ~ 7--6 ~ 60-
1 4 Days 10Straight2530 ~ 1200[Stainless Steel (martensitique)] EN 1.4037 Equiv.No TreatmentInduction Hardening (56HRC~)Solid, One End Grooved---6 ~ 7--6 ~ 75-
1 4 Days 10Straight3035 ~ 1500[Stainless Steel (martensitique)] EN 1.4037 Equiv.No TreatmentInduction Hardening (56HRC~)Solid, One End Grooved---7--6 ~ 90-

Loading...

  1. 1

Back to Linear Shaft Category

Technical Drawing - Linear Shafts

 

Ends Grooved/Threaded/Tapped/Stepped:Related Image
Annealing could reduce hardness at set screw grooved shaft end machined areas (effective thread length + approx. 10mm).
L Dimension Tolerance, Circularity, Straightness, Perpendicularity, Concentricity and Changes in Hardness >> P.111
Features of LTBC Plating Here

 

Specification Tables - Linear Shafts

 

Overview of the shaft designs as PDF

 

Part NumberL specified in
1mm Increment
Slot DimensionD Tol.C
TypeDV, G (1mm Increment)K, Q (Selection)D1g6
Solid, Both Ends Grooved
SFJQ
SSFJQ
PSFJQ
PSSFJQ
620~6005~184   5-0.004
-0.012
0.5 or Less
820~8005~2445  7-0.005
-0.014
0.5 or Less
1020~8005~3045  9-0.005
-0.014
0.5 or Less
1220~10005~36 5  10-0.006
-0.017
0.5 or Less
1325~10005~39 5  11-0.006
-0.017
0.5 or Less
1525~10005~45 56 13-0.006
-0.017
0.5 or Less
1630~12005~48 56 14-0.006
-0.017
0.5 or Less
1830~12005~54 56 16-0.006
-0.017
0.5 or Less
2030~12006~60  6718-0.007
-0.020
1.0 or Less
2535~12006~75  6723-0.007
-0.020
1.0 or Less
3035~15006~90   728-0.007
-0.020
1.0 or Less
 
Part NumberL specified in
1mm Increment
Slot DimensionD Tol.C
TypeDG (1mm Increment)Q (Selection)D1g6
Solid, One End Grooved
SFJS
SSFJS
PSFJS
PSSFJS
620~6005~184   5-0.004
-0.012
0.5 or Less
820~8005~2445  7-0.005
-0.014
0.5 or Less
1020~8005~3045  9-0.005
-0.014
0.5 or Less
1220~10005~36 5  10-0.006
-0.017
0.5 or Less
1325~10005~39 5  11-0.006
-0.017
0.5 or Less
1525~10005~45 56 13-0.006
-0.017
0.5 or Less
1630~12005~48 56 14-0.006
-0.017
0.5 or Less
1830~12005~54 56 16-0.006
-0.017
0.5 or Less
2030~12006~60  6718-0.007
-0.020
1.0 or Less
2535~12006~75  6723-0.007
-0.020
1.0 or Less
3035~15006~90   728-0.007
-0.020
1.0 or Less
 
Part NumberL specified in
1mm Increment
One End Tapped SelectionSlot DimensionD Tol.C
TypeDM (Coarse)G (1mm Increment)Q (Selection)D1g6
One End Tapped Type
SFTS
SSFTS
PSFTS
PSSFTS
620~6003         5~184   5-0.004
-0.012
0.5 or Less
820~800345       5~2445  7-0.005
-0.014
0.5 or Less
1020~8003456      5~3045  9-0.005
-0.014
0.5 or Less
1220~1000 4568     5~36 5  10-0.006
-0.017
0.5 or Less
1325~1000 4568     5~39 5  11-0.006
-0.017
0.5 or Less
1525~1000 456810    5~45 56 13-0.006
-0.017
0.5 or Less
1630~1200 456810    5~48 56 14-0.006
-0.017
0.5 or Less
1830~1200 45681012   5~54 56 16-0.006
-0.017
0.5 or Less
2030~1200 45681012   6~60  6718-0.007
-0.020
1.0 or Less
2535~1200 4568101216  6~75  6723-0.007
-0.020
1.0 or Less
3035~1500   6810121620246~90   728-0.007
-0.020
1.0 or Less
V+K/2+1≤L/2 or G+Q/2+1≤L/2 is required. For One End Tapped Type, G≤L-Mx2-Qx2 is required.
When Mx2.5+4≥L, tap pilot holes may go through.
 
Part Number1mm IncrementSelectionSlot DimensionD Tol.(Y)Max.RC
TypeDLFBPG (1mm Increment)Q (Selection)D1g6
Threaded Type
SFNS
SSFNS
PSFNS
PSSFNS
625~5982≤F≤Px5(When P≤6)
B≤F-2

(When P=8, 10)
B≤F-3

(When P≥12)
B≤F-5

B≥Pitchx3
3456       5~184   5-0.004
-0.012
6000.3 or Less0.5 or Less
825~79834568      5~2445  7-0.005
-0.014
8000.3 or Less0.5 or Less
1025~798 456810     5~3045  9-0.005
-0.014
8000.3 or Less0.5 or Less
1225~998  5681012    5~36 5  11-0.006
-0.017
10000.3 or Less0.5 or Less
1325~998  5681012    5~39 5  11-0.006
-0.017
10000.3 or Less0.5 or Less
1525~998  5681012    5~45 56 13-0.006
-0.017
10000.3 or Less0.5 or Less
1625~1198  568101216   5~48 56 14-0.006
-0.017
12000.3 or Less0.5 or Less
1825~1198  568101216   5~54 56 16-0.006
-0.017
12000.3 or Less0.5 or Less
2025~1198   6810121620  6~60  6718-0.007
-0.020
12000.3 or Less1.0 or Less
2525~1198    81012162024 6~75  6723-0.007
-0.020
12000.3 or Less1.0 or Less
3025~1498    81012162024306~90   728-0.007
-0.020
15000.3 or Less1.0 or Less
 
Part Number1mm IncrementSlot DimensionD Tol.(Y)Max.C
TypeDLBG (1mm Increment)Q (Selection)D1g6
One End Threaded with
O.D. same as Shaft O.D.
SFQS
SSFQS
PSFQS
PSSFQS
625~598Pitchx3≤B≤Mx5


For One End Threaded
with O.D. same as Shaft
O.D., L dimensions
have priority, thus the
effective thread length
will be B-(Pitchx2).
5~184   5-0.004
-0.012
6000.5 or Less
825~7985~2445  7-0.005
-0.014
8000.5 or Less
1025~7985~3045  9-0.005
-0.014
8000.5 or Less
1225~9985~36 5  11-0.006
-0.017
10000.5 or Less
1625~11985~48 56 14-0.006
-0.017
12000.5 or Less
2025~11986~60  6718-0.007
-0.020
12001.0 or Less
3025~14986~90   728-0.007
-0.020
15001.0 or Less
V+K/2+1≤L/2 or G+Q/2+1≤L/2 is required.
 
Coarse Thread Dimension
MPitch
30.5
40.7
50.8
61.0
81.25
101.5
121.75
162.0
202.5
243.0
303.5

 

Alterations - Linear Shafts


Ends Grooved/Threaded/Tapped/Stepped:Related Image

You find further options in detail under Option Overview.

Basic information

Basic Shape Solid Shaft end Shape (Right) Set screw groove Shaft end Perpendicularity 0.2
Heat Treatment Induction Hardened ISO Tolerance g6

Frequently Asked Questions (FAQ)

Question:

What is the difference between a hollow shaft and a solid shaft?

Answer:

With the same size, there are three differences between a hollow shaft and a solid shaft. Hollow shafts weigh less. The inner cavity of a hollow shaft is suitable for use as a channel (cable channel). Solid shafts are a bit more rigid (higher resistance torque).

Question:

What is the minimum order of linear shafts from MISUMI?

Answer:

MISUMI supplies solid shafts, hollow shafts and precision shafts starting at a lot size of 1. This also applies to all other items in our product range.

Question:

Noises and vibrations occur with a linear shaft. In addition, there are jerky movements. What could cause this?

Answer:

In general, it may be caused if the steel shaft is not properly lubricated. In addition, an incorrectly selected diameter tolerance of the linear shafts may also make the cycle of motion more difficult. When using MISUMI linear ball bearings, a g6 shaft tolerance is recommended (tolerance recommendations may vary depending on the manufacturer).

Question:

What is the strength of a solid shaft?

Answer:

The strength of a linear shaft, although it is a solid shaft, hollow shaft or precision shaft, should always be selected in consideration of the strength of the material used.

Question:

What are the advantages of a hollow shaft over a solid shaft?

Answer:

There are various advantages of a hollow shaft compared to a solid shaft. If the outer diameter is the same, the weight of a hollow shaft is lower than that of a solid shaft. However, the cavity of the hollow shaft can also be used as a cable channel or for cooling. A hollow shaft is at the same weight or with the same cross-sectional area more rigid than a solid shaft, because the outer diameter is larger. However, the question that needs to be answered is whether the advantage is a greater room utilization or less weight.

Question:

Is a hollow shaft stiffer than a solid shaft?

Answer:

The rigidity of a hollow shaft is slightly lower with the same outer diameter than that of a solid shaft. However, with the same cross-sectional area or with the same weight, the stiffness of a hollow shaft is higher than that of a solid shaft, because the outer diameter of the hollow shaft is larger.

Question:

Why do I have running grooves on the linear shafts of my 3D printers?

Answer:

The running grooves on the linear shaft may have been created, for example, by using a linear ball bearing. To prevent grooves from forming on a steel shaft, it should be hardened and hard chromium plated, making it more durable and resistant to the wear and tear from ball bearings.

Question:

How do the flexure properties of hollow shafts and solid shafts differ?

Answer:

With an equally large outer diameter, a solid shaft has better flexure properties than an equally large hollow shaft. However, the solid shaft is not much stiffer than a hollow shaft with the same outer diameter, since the outer sections mainly carry the load. Hollow shafts with the same cross-sectional area are more rigid than solid shafts, because they have a larger outer diameter. Therefore, there is physically more material in the outer sections for the bending, which bears the loads.

Question:

I need a lacquered or matted shaft because reflections cause problems with the optics. Does MISUMI have something like that?

Answer:

MISUMI LTBC-coated linear shafts are an alternative to painted or matted steel shafts. The LTBC coating is low-reflection and has the same effect as painted and matte shafts. In addition, LTBC-coated linear shafts are more resistant to wear and tear and flaking. You can find further information on LTBC coating here .

Question:

It has been shown that a hollow shaft is stronger than a solid shaft made of the same material. Why?

Answer:

A hollow shaft with the same outer dimensions is principally not stronger than a solid shaft. However, a hollow shaft per weight unit is stronger.

Show more FAQ Close

Complementary Products

Tech Support

Technical Support
Tel:+49 69 668173-0 / FAX:+49 69 668173-360